Purpose
To develop and validate a method for choosing the optimal two-dimensional CAIPIRINHA kernel for subtraction contrast-enhanced MR angiography (CE-MRA) and estimate the degree of image quality improvement versus that of some reference acceleration parameter set at R≥8.
Methods
A metric based on patient-specific coil calibration information was defined for evaluating optimality of CAIPIRINHA kernels as applied to subtraction CE-MRA. Evaluation in retrospective studies using archived coil calibration data from abdomen, calf, foot, and hand CE-MRA exams was accomplished with an evaluation metric comparing the geometry factor (g-factor) histograms. Prospective calf, foot, and hand CE-MRA studies were evaluated with vessel signal-to-noise ratio (SNR).
Results
Retrospective studies show g-factor improvement for the selected CAIPIRINHA kernels was significant in the feet, moderate in the abdomen, and modest in the calves and hands. Prospective CE-MRA studies using optimal CAIPIRINHA show reduced noise amplification with identical acquisition time in studies of the feet, with minor improvements in the hands and calves.
Conclusion
A method for selection of the optimal CAIPIRINHA kernel for high (R≥8) acceleration CE-MRA exams given a specific patient and receiver array was demonstrated. CAIPIRINHA optimization appears valuable in accelerated CE-MRA of the feet and to a lesser extent in the abdomen.