Dual energy basis decomposition techniques apply to single projection radiographic imaging. The high and low energy images are non-linearly transformed to generate two energy-independent images characterizing the integrated Compton/photoelectric attenuation components. Characteristic linear combinations of these two basis images identify unknown materials, cancel known materials, and generate synthesized monoenergetic images. The problems of intervening materials and material displacement are solved in general for a wide class of clinical imaging tasks. The basis projection angle identifies one from a family of energy selective imaging tasks, and such performance measures as the contrast enhancement factor (CEF) and signal to noise ratio (SNR) are expressed as functions of this angle. Algorithms for the decomposition of high and low energy measurements are compared and experimental images are included.
Respiratory motion is a major limiting factor in improving image resolution and signal-to-noise ratio in MR coronary imaging. In this work the effects of respiration on the cardiac position were studied quantitively by imaging the heart during diastole at various positions of tidal respiration with a breath-hold segmented fast gradient echo technique. It was found that during tidal breathing the movement of the heart due to respiration is dominated by superior-inferior (SI) motion, which is linearly related to the SI motion of the diaphragm. The motion of the heart due to respiration is approximately a global translation. These results provide motivation for employing adaptive motion correction techniques to reduce image blurring in nonbreath-hold coronary MR imaging.
In this article we describe the precision in the estimation of the spin-lattice relaxation time T1 from MRI signals acquired for various flip angles with the repetition time TR held constant. We review the estimation procedure itself and present a model for the propagation of noise in the signal into the calculated T1. This model is verified by both Monte Carlo simulations and experimental data taken on image phantoms. Based on this model, we find that for a given TR/T1 there exist two optimal flip angles that will minimize the uncertainty in the estimated T1. We also show how two optimal angles can be selected for a given range of TR/T1 values. In addition, T1 estimation using the two optimal angles can be comparable to or better than using multiple evenly spaced angles. Finally, in an initial comparison with the two-point saturation recovery method of calculating T1, results for equal total scanning time TRTot suggest that for T1 greater than 0.5 TRTot, the limited flip angle approach gives better T1 precision whereas for T1 less than 0.5 TRTot the saturation recovery approach is better.
A method of magnetic resonance image acquisition and reconstruction is described in which high imaging rates and fast reconstruction times are allowed. The acquisition is a modification of the basic FLASH sequence but with a restricted number N of phase encodings. The encodings are applied sequentially, periodically, and continuously. Images are formed by sliding a window of width N encodings along the acquired data and reconstructing an image for each position of the window. In general the acquisition time per image exceeds the time between successive images, and the method thus has a temporal lag. Experimental studies were performed with a dynamic phantom using 48 phase encodings and a TR of 20 ms, for an image acquisition time of about 1 s. The image display rate in the reconstructed sequence was 12.5 images/s, and the image sequence portrayed the motion of the phantom. Additional studies were done with 24 encodings. It is shown how the sliding window technique lends itself to high-speed reconstruction, with each newly acquired echo used to quickly update the image on display. The combination of the acquisition technique described and a hardware implementation of the reconstruction algorithm can result in realtime MR image acquisition and reconstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.