An intelligent wheelchair (IW) system is developed in order to support safe mobility for disabled or elderly people with various impairments. The proposed IW offers two main functions: obstacle detection and avoidance, and situation recognition. First, through a combination of a vision sensor and eight ultrasonic ones, it detects diverse obstacles and produces occupancy grid maps (OGMs) that describe environmental information, including the positions and sizes of obstacles, which is then given to the learning-based algorithm. By learning the common patterns among OGMs assigned to the same directions, the IW can automatically find paths to prevent collisions with obstacles. Second, it distinguishes a situation whereby the user is standing on a sidewalk, traffic intersection, or roadway through analyzing the texture and shape of the images, which aids in preventing any accidents that would result in fatal injuries to the user, such as collisions with vehicles. From the experiments that were performed in various environments, we can prove the following: (1) the proposed system can recognize different types of outdoor places with 98.3% accuracy; and (2) it can produce paths that avoid obstacles with 92.0% accuracy.