Diverse diode characteristics were observed in two-dimensional (2D) black phosphorus (BP) and molybdenum disulfide (MoS) heterojunctions. The characteristics of a backward rectifying diode, a Zener diode, and a forward rectifying diode were obtained from the heterojunction through thickness modulation of the BP flake or back gate modulation. Moreover, a tunnel diode with a precursor to negative differential resistance can be realized by applying dual gating with a solid polymer electrolyte layer as a top gate dielectric material. Interestingly, a steep subthreshold swing of 55 mV/dec was achieved in a top-gated 2D BP-MoS junction. Our simple device architecture and chemical doping-free processing guaranteed the device quality. This work helps us understand the fundamentals of tunneling in 2D semiconductor heterostructures and shows great potential in future applications in integrated low-power circuits.
Currently 2D crystals are being studied intensively for use in future nano-electronics, as conventional semiconductor devices face challenges in high power consumption and short channel effects when scaled to the quantum limit. Toward this end, achieving barrier-free contact to 2D semiconductors has emerged as a major roadblock. In conventional contacts to bulk metals, the 2D semiconductor Fermi levels become pinned inside the bandgap, deviating from the ideal Schottky-Mott rule and resulting in significant suppression of carrier transport in the device. Here we realized MoS 2 polarity control without extrinsic doping by employing 1D elemental metal contact scheme. Use of high work function palladium (Pd) or gold (Au) achieved high quality p-type dominant contact to intrinsic MoS 2 , realizing Fermi level de-pinning. Field-effect transistors (FET) with Pd edge contact and Au edge contact show high performance with the highest hole mobility reaching 330 cm 2 /Vs and 432 cm 2 /Vs at 300 K respectively. The ideal Fermi level alignment allows creation of p-and n-type FETs on the same intrinsic MoS 2 flake using Pd and low work function molybdenum (Mo) contacts, respectively. This device acts as an efficient inverter, a basic building block for semiconductor integrated circuits, with gain reaching 15 at V D =5 V.
A novel algorithm is proposed for robust step detection irrespective of step mode and device pose in smartphone usage environments. The dynamics of smartphones are decoupled into a peak-valley relationship with adaptive magnitude and temporal thresholds. For extracted peaks and valleys in the magnitude of acceleration, a step is defined as consisting of a peak and its adjacent valley. Adaptive magnitude thresholds consisting of step average and step deviation are applied to suppress pseudo peaks or valleys that mostly occur during the transition among step modes or device poses. Adaptive temporal thresholds are applied to time intervals between peaks or valleys to consider the time-varying pace of human walking or running for the correct selection of peaks or valleys. From the experimental results, it can be seen that the proposed step detection algorithm shows more than 98.6% average accuracy for any combination of step mode and device pose and outperforms state-of-the-art algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.