Mutationally activated kinases play an important role in the progression and metastasis of many cancers. Despite numerous oncogenic alterations implicated in metastatic prostate cancer, mutations of kinases are rare. Several lines of evidence suggest that nonmutated kinases and their pathways are involved in prostate cancer progression, but few kinases have been mechanistically linked to metastasis. Using a mass spectrometry-based phosphoproteomics dataset in concert with gene expression analysis, we selected over 100 kinases potentially implicated in human metastatic prostate cancer for functional evaluation. A primary in vivo screen based on overexpression of candidate kinases in murine prostate cells identified 20 wild-type kinases that promote metastasis. We queried these 20 kinases in a secondary in vivo screen using human prostate cells. Strikingly, all three RAF family members, MERTK, and NTRK2 drove the formation of bone and visceral metastasis confirmed by positron-emission tomography combined with computed tomography imaging and histology. Immunohistochemistry of tissue microarrays indicated that these kinases are highly expressed in human metastatic castration-resistant prostate cancer tissues. Our functional studies reveal the strong capability of select wild-type protein kinases to drive critical steps of the metastatic cascade, and implicate these kinases in possible therapeutic intervention.kinases | metastasis | prostate cancer | bone metastasis M etastatic prostate cancer is responsible for the deaths of ∼30,000 men in the United States each year (1, 2). Ninety percent of patients develop bone metastases, and other major sites of metastases include lymph nodes, liver, adrenal glands, and lung (3). First-line treatments for metastatic disease are androgen deprivation therapies that block androgen synthesis or signaling through the androgen receptor (AR) (2). Inevitably, metastatic prostate cancer becomes resistant to androgen blockade. Second-line treatments such as chemotherapy (docetaxel, cabazitaxel) and radiation only extend survival 2-4 mo (4, 5).Identifying new therapeutic targets for metastatic prostate cancer has proven difficult. Exome and whole-genome sequencing of human metastatic prostate cancer tissues have found frequent mutations and/or chromosomal aberrations in numerous genes, including AR, TP53, PTEN, BRCA2, and MYC (6-11). The precise functional contribution of these genes to prostate cancer metastasis remains unknown. Genomic and phosphoproteomic analyses have also revealed that metastatic prostate cancer is molecularly heterogeneous, which has complicated the search for common therapeutic targets (12). Few murine models of prostate cancer develop metastases. Mice having prostate-specific homozygous deletions in SMAD4 and PTEN or expression of mutant KRAS develop metastases in visceral organs but rarely in bone (13-15).Targeting genetically altered constitutively active protein kinases such as BCR-ABL in chronic myelogenous leukemia and BRAF V600E in melanoma has led to dramat...