SUMMARY We used clinical tissue from lethal metastatic castration resistant prostate cancer (CRPC) patients obtained at rapid autopsy to evaluate diverse genomic, transcriptomic, and phosphoproteomic datasets for pathway analysis. Using Tied Diffusion through Interacting Events (TieDIE), we integrated differentially expressed master transcriptional regulators, functionally mutated genes, and differentially activated kinases in CRPC tissues to synthesize a robust signaling network consisting of druggable kinase pathways. Using MSigDB hallmark gene sets, six major signaling pathways with phosphorylation of several key residues were significantly enriched in CRPC tumors after incorporation of phosphoproteomic data. Individual autopsy profiles developed using these hallmarks revealed clinically relevant pathway information potentially suitable for patient stratification and targeted therapies in late stage prostate cancer. Here we describe phosphorylation-based cancer hallmarks using integrated personalized signatures (pCHIPS) that sheds light on the diversity of activated signaling pathways in metastatic CRPC while providing an integrative, pathway-based reference for drug prioritization in individual patients.
Metastatic colonization involves cancer cell lodgment or adherence in the microvasculature and subsequent migration of those cells across the endothelium into a secondary organ site. To study this process further, we analyzed transendothelial migration of human PC-3 prostate cancer cells in vitro. We isolated a subpopulation of cells, TEM4-18, that crossed an endothelial barrier more efficiently, but surprisingly, were less invasive than parental PC-3 cells in other contexts in vitro. Importantly, TEM4-18 cells were more aggressive than PC-3 cells in a murine metastatic colonization model. Microarray and FACS analysis of these cells showed that the expression of many genes previously associated with leukocyte trafficking and cancer cell extravasation were either unchanged or down-regulated. Instead, TEM4-18 cells exhibited characteristic molecular markers of an epithelial-to-mesenchymal transition (EMT), including frank loss of E-cadherin expression and up-regulation of the E-cadherin repressor ZEB1. Silencing ZEB1 in TEM4-18 cells resulted in increased E-cadherin and reduced transendothelial migration. TEM4-18 cells also express N-cadherin, which was found to be necessary, but not sufficient for increased transendothelial migration. Our results extend the role of EMT in metastasis to transendothelial migration and implicate ZEB1 and N-cadherin in this process in prostate cancer cells. INTRODUCTIONMetastatic prostate cancer is a lethal disease and the second most frequent cause of cancer-related mortality in men in the United States (Jemal et al., 2008). Unfortunately, for such a prevalent disease, much remains unknown about the cellular and molecular mechanisms underlying prostate cancer metastasis. Extravasation, a step within the metastatic cascade, is the process whereby cancer cells exit the circulation via migration through an endothelial monolayer into the parenchyma of a secondary organ site (Wood, 1958). For extravasation to occur, cancer cells, perhaps associated with a thrombus, must first contact the microvascular endothelium, becoming entrapped in small-diameter vessels or adhering specifically to the luminal surface of the endothelium (Warren and Vales, 1972;Kramer and Nicolson, 1979). Some evidence suggests that extravasation is an efficient process, whereas other studies indicate that in some cases it might not occur at all because cancer cells proliferate intraluminally before rupturing microvessels (Crissman et al., 1985;Lapis et al., 1988;Luzzi et al., 1998). Adding to this complexity is that the mechanism of extravasation may depend on the tumor type and vascular bed involved. Thus, as with many other aspects of metastasis, questions remain about the basic mechanisms and the overall role of extravasation in the metastatic cascade.The passage of cancer cells across the endothelium, or transendothelial migration, is thought to be conceptually similar to leukocyte diapedesis (for a recent review see Miles et al., 2008). The extent to which this is true remains controversial, but several classes ...
Moringa oleifera Lam. (M. oleifera), which belongs to the Moringaceae family, is a perennial deciduous tropical tree, and native to the south of the Himalayan Mountains in northern India. M. oleifera is rich in proteins, vitamin A, minerals, essential amino acids, antioxidants, and flavonoids, as well as isothiocyanates. The extracts from M. oleifera exhibit multiple nutraceutical or pharmacological functions including anti-inflammatory, antioxidant, anti-cancer, hepatoprotective, neuroprotective, hypoglycemic, and blood lipid-reducing functions. The beneficial functions of M. oleifera are strongly associated with its phytochemicals such as flavonoids or isothiocyanates with bioactivity. In this review, we summarize the research progress related to the bioactivity and pharmacological mechanisms of M. oleifera in the prevention and treatment of a series of chronic diseases—including inflammatory diseases, neuro-dysfunctional diseases, diabetes, and cancers—which will provide a reference for its potential application in the prevention and treatment of chronic diseases or health promotion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.