During insect larval-pupal metamorphosis, proteins in the hemolymph are absorbed by the fat body for the maintenance of intracellular homeostasis; however, the type of proteins and how these proteins are internalized into the fat body are unclear. In Bombyx mori, the developmental profiles of total proteins in the hemolymph and fat body showed that hemolymph-decreased protein bands (55-100 kDa) were in accordance with those protein bands that increased in the fat body. Inhibition of clathrin-dependent endocytosis predominantly blocked the transportation of 55-100 kDa proteins from the hemolymph into the fat body, which was further verified by RNA interference treatment of Bmclathrin. Six hexamerins were shown to comprise ß90% of the total identified proteins in both the hemolymph and fat body by mass spectrum (MS) analysis. In addition, hemolymphspecific proteins were mainly involved in material transportation, while fat body-specific proteins particularly participated in metabolism. In this paper, four hexamerins were found for the first time, and potential proteins absorbed by the fat body from the hemolymph through clathrin-dependent endocytosis were identified. This study sheds light on the protein absorption mechanism during insect metamorphosis.