Exiting strategies for 3D shape-changing structures are constrained by either the complicated fabrication process or the harsh demands of active materials. Facile preparation of 3D shape-changing structures with an extremely simple approach based on the elastomeric polymer still remains a challenging topic. Here, we report a fast digital patterning of surface topography of a single-layer elastomeric polymer toward 3D shape-changing structures. The surface topography features digitally engraved grooves by a laser engraver on a poly(dimethylsiloxane) (PDMS) sheet, which is surface oxidized by the UV-ozone treatment. The resulting engraved PDMS sheets exhibit programmable shape-changing behaviors to form various 3D structures under the action of organic solvent. Experimental and numerical studies reveal the fundamental aspects of surface topography-guided 3D shape-changing structures. Demonstrations of this concept in developing various complex 3D shape-changing structures illustrate the simplicity and effectiveness of our approach, thereby creating engineering opportunities in a wide range of applications such as actuators and soft robots.
Soft materials fail by crack propagation under external loads. While fracture toughness of a soft material can be enhanced by orders of magnitude, its fatigue threshold remains insusceptible. In this work, we demonstrate a crack tip softening (CTS) concept to simultaneously improve the toughness and threshold of a single polymeric network. Polyacrylamide hydrogels have been selected as a model material. The polymer network is cured by two kinds of crosslinkers: a normal crosslinker and a light-degradable crosslinker. We characterize the pristine sample and light-treated sample by shear modulus, fracture toughness, fatigue threshold, and fractocohesive length. Notably, we apply light at the crack tip of a sample so that the light-sensitive crosslinkers degrade, resulting in a CTS sample with a softer and elastic crack tip. The pristine sample has a fracture toughness of 748.3 ± 15.19 J/m
2
and a fatigue threshold of 9.3 J/m
2
. By comparison, the CTS sample has a fracture toughness of 2,774.6 ± 127.14 J/m
2
and a fatigue threshold of 33.8 J/m
2
. Both fracture toughness and fatigue threshold have been enhanced by about four times. We attribute this simultaneous enhancement to stress de-concentration and elastic shielding at the crack tip. Different from the “fiber/matrix composite” concept and the “crystallization at the crack tip” concept, the CTS concept in the present work provides another option to simultaneously enhance the toughness and threshold, which improves the reliability of soft devices during applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.