Nephronophthisis (NPHP), an autosomal recessive cystic kidney disease, leads to chronic renal failure in children. The genes mutated in NPHP1 and NPHP4 have been identified, and a gene locus associated with infantile nephronophthisis (NPHP2) was mapped. The kidney phenotype of NPHP2 combines clinical features of NPHP and polycystic kidney disease (PKD). Here, we identify inversin (INVS) as the gene mutated in NPHP2 with and without situs inversus. We show Correspondence should be addressed to F.H. (fhilde@umich.edu). 12 These authors contributed equally to this work 13 These authors contributed equally to this work GenBank accession numbers. INVS cDNA, NM_014425; Invs cDNA, NM_010569; invs cDNA, AF465261; INVS in chromosome 9 genome contig, NT_008470.URLs. Additional information is available at http://danio.mgh.harvard.edu/blast/blast.html. Note: Supplementary information is available on the Nature Genetics website.
Competing Interests Statement:The authors declare that they have no competing financial interests.
NIH Public AccessAuthor Manuscript Nat Genet. Author manuscript; available in PMC 2013 August 02.
NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript molecular interaction of inversin with nephrocystin, the product of the gene mutated in NPHP1 and interaction of nephrocystin with ÎČ-tubulin, a main component of primary cilia. We show that nephrocystin, inversin and ÎČ-tubulin colocalize to primary cilia of renal tubular cells. Furthermore, we produce a PKD-like renal cystic phenotype and randomization of heart looping by knockdown of invs expression in zebrafish. The interaction and colocalization in cilia of inversin, nephrocystin and ÎČ-tubulin connect pathogenetic aspects of NPHP to PKD, to primary cilia function and to leftright axis determination.NPHP, an autosomal recessive cystic kidney disease, is the most frequent genetic cause for end-stage renal failure in children and young adults [1][2][3] . Causative mutations in two genes (NPHP1 and NPHP4) have been identified by positional cloning [4][5][6][7] . There is considerable interest in identifying genes associated with NPHP because its most prominent feature is development of renal interstitial fibrosis 8 , which in chronic renal disease of all origin represents the pathogenic event correlated most strongly to loss of renal function 9 . As little was known about the pathogenesis of NPHP, positional cloning was used to identify a new gene, NPHP1, mutations in which cause NPHP1 (OMIM 256100; refs. 4,5). It encodes a novel docking protein, nephrocystin [10][11][12][13] , that interacts with components of cell-cell and cell-matrix signaling, such as focal adhesion kinase 2, tensin, p130Cas and filamin, and with nephrocystin-4 or nephroretinin, the product of NPHP4, mutations in which cause NPHP4 (OMIM 606966; refs. 6,7). Identification of the genes NPHP1 and NPHP4, which are conserved in evolution including in the nematode Caenorhabditis elegans, offered new insights into mechanisms of cell-cell and cell-matrix signaling...