We have previously shown that varying the N-terminal amino acid in alpha-helical peptides can cause large variations in helix content (Chakrabartty et al., 1993a). The Lifson-Roig theory for the helix-coil transition predicts, however, that substitutions at the N-terminus in an unacetylated peptide should have no effect on alpha-helix stability. We have therefore modified the theory to include these N-capping effects by assigning a statistical weight (the "n-value") to the amino acid immediately preceding a stretch of helical residues. The n-value measures the N-capping propensity of an amino acid, and like the helix propensity (w-value), it is independent of neighboring residues or positions in sequence. The new theory was used, with the experimental data for these substitutions, to calculate n-values and, hence, free energies for N-capping for the amino acids Gln, Ala, Val, Met, Pro, Ile, Leu, Thr, Gly, Ser, and Asn as well as for the acetyl group, which is commonly used to cap peptides. The free energies vary by approximately 1 kcal mol-1 from Gln (worst) to Asn (best), and the acetyl group is nearly as effective as Asn. N-Capping free energies were also found for Leu, Thr, Gly, Ser, and Asn when the N-terminus is charged at pH 5. The unfavorable effect of protonation of the N-terminus in an alpha-helix was found to be approximately 0.5 kcal mol-1. Our results agree well with a survey of N-capping preferences from protein crystal structures and are compared to results from site-directed mutagenesis of N-caps in proteins.