The rapid development of science and technology has created favorable conditions for Connected and Automated Vehicles (CAVs). Accurate localization is one of the fundamental functions of CAV to realize some advanced operations such as vehicle platooning. However, complicated urban traffic environments, such as the flyover, significantly influence vehicular positioning accuracy. The inability of CAV to accurately perceive self-localization information has become an urgent issue to be addressed. This paper proposed a novel cooperative localization method by introducing the relative Direction-of-Arrival (DOA) and Relative Distance (RD) into CAV to improve the localization accuracy of CAV in the multivehicle environment. First, the three-dimensional positioning error model of the host vehicle concerning adjacent vehicles in azimuth angle and pitch angle and intervehicle distances under the vehicle-to-vehicle communication was established. Second, two least-squares estimation algorithms, linear and nonlinear, are established to decrease the position errors by combining relative DOA and RD measurement information. To verify the proposed algorithm's effect, the PreScan-Simulink joint simulation is carried out. The results show that the host vehicle's localization accuracy by the proposed method can be improved by 25% compared with direct linearization. Besides, by combining relative DOA and relative RD measurement, the locating capability of the least-square-based nonlinear optimization method can be enhanced by 22%.