Many surveys on vehicle traffic safety have shown that the tire road friction coefficient (TRFC) is correlated with the probability of an accident. The probability of road accidents increases sharply on slippery road surfaces. Therefore, accurate knowledge of TRFC contributes to the optimization of driver maneuvers for further improving the safety of intelligent vehicles. A large number of researchers have employed different tools and proposed different algorithms to obtain TRFC. This work investigates these different methods that have been widely utilized to estimate TRFC. These methods are divided into three main categories: off-board sensors-based, vehicle dynamics-based, and data-driven-based methods. This review provides a comparative analysis of these methods and describes their strengths and weaknesses. Moreover, some future research directions regarding TRFC estimation are presented.
Precise localization is critical to safety for connected and automated vehicles (CAV). The global navigation satellite system is the most common vehicle positioning method and has been widely studied to improve localization accuracy. In addition to single-vehicle localization, some recently developed CAV applications require accurate measurement of the inter-vehicle distance (IVD). Thus, this paper proposes a cooperative localization framework that shares the absolute position or pseudorange by using V2X communication devices to estimate the IVD. Four IVD estimation methods are presented: Absolute Position Differencing (APD), Pseudorange Differencing (PD), Single Differencing (SD) and Double Differencing (DD). Several static and dynamic experiments are conducted to evaluate and compare their measurement accuracy. The results show that the proposed methods may have different performances under different conditions. The DD shows the superior performance among the four methods if the uncorrelated errors are small or negligible (static experiment or dynamic experiment with open-sky conditions). When multi-path errors emerge due to the blocked GPS signal, the PD method using the original pseudorange is more effective because the uncorrelated errors cannot be eliminated by the differential technique.
Most researches focus on the regenerative braking system design in vehicle components control and braking torque distribution, few combine the connected vehicle technologies into braking velocity planning. If the braking intention is accessed by the vehicle-to-everything communication, the electric vehicles (EVs) could plan the braking velocity for recovering more vehicle kinetic energy. Therefore, this paper presents an energy-optimal braking strategy (EOBS) to improve the energy efficiency of EVs with the consideration of shared braking intention. First, a double-layer control scheme is formulated. In the upper-layer, an energy-optimal braking problem with accessed braking intention is formulated and solved by the distance-based dynamic programming algorithm, which could derive the energy-optimal braking trajectory. In the lower-layer, the nonlinear time-varying vehicle longitudinal dynamics is transformed to the linear time-varying system, then an efficient model predictive controller is designed and solved by quadratic programming algorithm to track the original energy-optimal braking trajectory while ensuring braking comfort and safety. Several simulations are conducted by jointing MATLAB and CarSim, the results demonstrated the proposed EOBS achieves prominent regeneration energy improvement than the regular constant deceleration braking strategy. Finally, the energy-optimal braking mechanism of EVs is investigated based on the analysis of braking deceleration, battery charging power, and motor efficiency, which could be a guide to real-time control.
Connected and automated vehicles (CAVs) are recognized as a promising solution to improve road safety. Before deploying CAVs, securing the communication environment is a critical challenge. To secure the exchanged sensitive messages between CAVs, a novel cooperative trust-aware tolerant misbehaviour detection system (CT2-MDS) is proposed in this paper. The vehicle-to-everything (V2X) network model in real complex scenarios is built first, and several typical types of attacks are simulated. The cooperative trust factor is then defined to evaluate the received message packet's plausibility instead of the node. And the measuring uncertainty of sensors is considered to improve the overall detection precision. At last, a multi-model fusion misbehaviour detection method is presented based on the idea of cross-validation. In this mechanism, different from the binary classification, the misbehaviour messages are categorized into particular misbehaving classes. To verify the proposed system's performance, the simulation is conducted, and the results showed that the proposed method outperformed existing single classifiers and provided good prediction accuracy in different attack density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.