Commoditization and virtualization of wireless networks are changing the economics of mobile networks to help network providers, e.g. Mobile Network Operator (MNO), Mobile Virtual Network Operator (MVNO), move from proprietary and bespoke hardware and software platforms towards an open, cost-effective, and flexible cellular ecosystem. In addition, rich and innovative local services can be efficiently materialized through cloudification by leveraging the existing infrastructure. In this work, we present a Radio Access Network as a Service (RANaaS), in which a Cloudified Centralized Radio Access Network (C-RAN) is delivered as a service. RANaaS describes the service life-cycle of an on-demand, elastic, and pay as you go RAN instantiated on top of the cloud infrastructure. Due to short deadlines in many examples of RAN, the fluctuations of processing time, introduced by the virtualization framework, have a deep impact on the C-RAN performance. While in typical cloud environments, the deadlines of processing time cannot be guaranteed, the cloudification of C-RAN, in which signal processing runs on general purpose processors inside Virtual Machines (VMs), is a challenging subject. We describe an example of real-time cloudified LTE network deployment using the OpenAirInterface (OAI) LTE implementation and OpenStack running on commodity hardware. We also show the flexibility and performance of the platform developed. Finally, we draw general conclusions on the RANaaS provisioning problem in future 5G networks.Abstract Commoditization and virtualization of wireless networks are changing the economics of mobile networks to help network providers, e.g. Mobile Network Operator (MNO), Mobile Virtual Network Operator (MVNO), move from proprietary and bespoke hardware and software platforms towards an open, cost-effective, and flexible cellular ecosystem. In addition, rich and innovative local services can be efficiently materialized through cloudification by leveraging the existing infrastructure. In this work, we present a Radio Access Network as a Service (RANaaS), in which a Cloudified Centralized Radio Access Network (C-RAN) is delivered as a service. RANaaS describes the service life-cycle of an on-demand, elastic, and pay as you go RAN instantiated on top of the cloud infrastructure. Due to short deadlines in many examples of RAN, the fluctuations of processing time, introduced by the virtualization framework, have a deep impact on the C-RAN performance. While in typical cloud environments, the deadlines of processing time cannot be guaranteed, the cloudification of C-RAN, in which signal processing runs on general purpose processors inside Virtual Machines (VMs), is a challenging subject. We describe an example of real-time cloudifed LTE network deployment using the OpenAirInterface (OAI) LTE implementation and OpenStack running on commodity hardware. We also show the flexibility and performance of the platform developed. Finally, we draw general conclusions on the RANaaS provisioning problem in future 5G networks.