2021
DOI: 10.48550/arxiv.2111.00800
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Cluster Algebras and Scattering Diagrams, Part III. Cluster Scattering Diagrams

Abstract: This is a self-contained exposition of several fundamental properties of cluster scattering diagrams introduced and studied by Gross, Hacking, Keel, and Kontsevich. In particular, detailed proofs are presented for the construction, the mutation invariance, and the positivity of theta functions of cluster scattering diagrams. Throughout the text we highlight the fundamental roles of the dilogarithm elements and the pentagon relation in cluster scattering diagrams. * This is a preliminary draft of Part III of th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 23 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?