We characterize mutation-finite cluster algebras of rank at least 3 using positive semi-definite quadratic forms. In particular, we associate with every unpunctured bordered surface a positive semi-definite quadratic space V , and with every triangulation a basis in V , such that any mutation of a cluster (i.e., a flip of a triangulation) transforms the corresponding bases into each other by partial reflections. Furthermore, every triangulation gives rise to an extended affine Weyl group of type A, which is invariant under flips. The construction is also extended to exceptional skew-symmetric mutation-finite cluster algebras of types E.