“…Firstly, the class of objective functions (e.g., Saltelli & Tarantola, 2002;Saltelli et al, 2004) consists of all transformations of the model outputs that do not modify the initial distribution of the model inputs. It includes transformations done by i) projecting the model outputs onto a given basis (Campbell et al, 2006;Lamboni et al, 2011;Xiao et al, 2018), using the kernel-based principal components, using feature maps of the outputs (Aronszajn, 1950;Schölkopf & Smola, 2002;Berlinet et al, 2004); ii) considering the probabilities of the stochastic and dynamic outputs to exceed a given threshold (Lamboni et al, 2014), iii) using a regression-based classifier (Lamboni et al, 2016), and iv) considering the membership functions from either a crisp (a.k.a binary) or fuzzy clustering (Roux et al, 2021).…”