2019
DOI: 10.1007/978-3-030-28374-2_23
|View full text |Cite
|
Sign up to set email alerts
|

Clustering Algorithms for Query Expansion Based Information Retrieval

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
1

Year Published

2020
2020
2023
2023

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(4 citation statements)
references
References 18 publications
0
3
0
1
Order By: Relevance
“…Our second proposed clustering strategy is KMedoids [18]. The KMedoids algorithm returns the medoid of each cluster -the medoid is the most centrally located embedding of the input document embeddings.…”
Section: Colbert-prf Variantsmentioning
confidence: 99%
See 1 more Smart Citation
“…Our second proposed clustering strategy is KMedoids [18]. The KMedoids algorithm returns the medoid of each cluster -the medoid is the most centrally located embedding of the input document embeddings.…”
Section: Colbert-prf Variantsmentioning
confidence: 99%
“…For the Approximate Scoring experiments, let š‘˜ 1 denote the number of passages retrieved in the Stage 1 ANN, and š‘˜ 4 denote the number of passages retrieved in the Stage 4 ANN. Then, for (i) the ColBERT-PRF Ranker model, we apply with rank cutoff of š‘˜ 1 = 300 and š‘˜ 4 = 1000 18 , and for (ii) the ReRanker model, we apply with rank cutoff š‘˜ 1 = 1000 in the first stage only, to ensure sufficient recall of relevant passages to be upranked after applying PRF. We later vary š‘˜ 1 and š‘˜ 4 to demonstrate their impact upon efficiency and effectiveness.…”
Section: Research Question and Experimental Setupmentioning
confidence: 99%
“…The terms to be added for the initial query are, commonly, the discriminative terms generated and selected from the collection itself via global [38], [44] or local dependent-corpus knowledge approach [49] either with the making use of local context analysis (LCA) [50] which uses the highly ranked documents qualified as relevant by the search system with adopting of pseudo relevance feedback [51] or interactively employing user judgment through relevance feedback information [52] injected by the user himself. For avoiding performance degradation especially when relying on pseudo-relevance feedback, automatic documents clustering may be extensively useful such as in [53]. Employing independent-corpus knowledge approach or external knowledge resources, such as other documents set [54], thesaurus [55], DBpedia [56], Freebase [57], ConceptNet [58], Wikipedia [59], or WordNet [35], [59], [60], is another adopted alternative for generating query expansion terms.…”
Section: Automatic Query Expansionmentioning
confidence: 99%
“…Sendo assim, propƵe-se extrair grupos de mesmo tema ou assunto sem necessidade de interferĆŖncia do usuĆ”rio, uma vez que geralmente o agrupamentoĆ© feito de maneira nĆ£o supervisionada. Vale ressaltar que alĆ©m da aplicaĆ§Ć£o direta do agrupamento de textos para organizaĆ§Ć£o e gerenciamento de coleƧƵes de textos em grupos temĆ”ticos, o agrupamento de textosĆ© utilizado para diversas outras finalidades e aplicaƧƵes como a organizaĆ§Ć£o de resultados de busca [Khennak et al 2019], seleĆ§Ć£o de exemplos para o aprendizado ativo [Ienco et al 2013], e aprendizado baseado em umaĆŗnica classe [Golo and Rossi 2019].…”
Section: Introductionunclassified