Redox-active amino acid residues are at the heart of biological electrontransfer reactions. They play important roles in natural protein functions and are implicated in disease states (e.g., oxidative-stress-associated disorders). Tryptophan (Trp) is one such redox-active amino acid residue, and it has long been known to serve a functional role in proteins. Broadly speaking, there is still much to learn about the local features that make some Trp redox active and others inactive. Herein, we describe a new protein model system where we investigate how a methionine (Met) residue proximal to a redox-active Trp affects its reactivity and spectroscopy. We use an artificial variant of azurin from Pseudomonas aeruginosa to produce these models. We employ a series of UV−visible spectroscopy, electrochemistry, electron paramagnetic resonance, and density functional theory experiments to demonstrate the effect that placing Met near Trp radicals has in the context of redox proteins. The introduction of Met proximal to Trp lowers its reduction potential by ca. 30 mV and causes clear shifts in the optical spectra of the corresponding radicals. While the effect may be small, it is significant enough to be a way for natural systems to tune Trp reactivity.