Artículo de publicación ISISome 290 species of squids comprise the order Teuthida that belongs to the molluscan Class Cephalopoda. Of these, about 30-40 squid species have substantial commercial importance around the world. Squid fisheries make a rather small contribution to world landings from capture fisheries relative to that of fish, but the proportion has increased steadily over the last decade, with some signs of recent leveling off. The present overview describes all substantial squid fisheries around the globe. The main ecological and biological features of exploited stocks, and key aspects of fisheries management are presented for each commercial species of squid worldwide. The history and fishing methods used in squid fisheries are also described. Special attention has been paid to interactions between squid fisheries and marine ecosystems including the effects of fishing gear, the role of squid in ecosystem change induced by overfishing on groundfish, and ecosystem-based fishery management
The important and diverse biological functions of β-adrenergic receptors (βARs) have promoted the search for compounds to stimulate or inhibit their activity. In this regard, unraveling the molecular basis of ligand binding/unbinding events is essential to understand the pharmacological properties of these G protein-coupled receptors. In this study, we use the steered molecular dynamics simulation method to describe, in atomic detail, the unbinding process of two inverse agonists, which have been recently co-crystallized with β1 and β2ARs subtypes, along four different channels. Our results indicate that this type of compounds likely accesses the orthosteric binding site of βARs from the extracellular water environment. Importantly, reconstruction of forces and energies from the simulations of the dissociation process suggests, for the first time, the presence of secondary binding sites located in the extracellular loops 2 and 3 and transmembrane helix 7, where ligands are transiently retained by electrostatic and Van der Waals interactions. Comparison of the residues that form these new transient allosteric binding sites in both βARs subtypes reveals the importance of non-conserved electrostatic interactions as well as conserved aromatic contacts in the early steps of the binding process.
Short-beaked common dolphins Delphinus delphis in the eastern North Atlantic (ENA) are subject to mortality due to entanglement in various types of fishing gear. However, for this region, there is no population-level information available on trends in abundance, (incidental) mortality rates or even the actual distributional range. Working under the assumption that only 1 population exists in ENA waters, the current study presents basic life history data and investigates whether biological information obtained from postmortem data is, in itself, useful for managing this population. Life history parameters were estimated by analysing postmortem data obtained over a 16 yr period by UK, Irish, French, Galician (northwest Spain) and Portuguese stranding and bycatch observer programmes. An annual pregnancy rate of 26%, a calving interval of 3.79 yr, an average age attained at sexual maturity of 8.22 yr and an average length at sexual maturity of 188 cm were determined. With respect to the findings based solely on mortality data, significance testing failed to detect differences that could be construed as evidence of the population exhibiting what might be density-dependent compensatory responses. The low annual pregnancy rate reported throughout the sampling period may suggest either that the level of anthropogenic mortality did not cause a substantial population level decline, or a prey base declining at approximately the same rate as the dolphin population. However, this approach alone does not facilitate an assessment of the current state of the D. delphis population in the ENA. Population abundance estimates, trends in abundance and knowledge of factors that affect the dynamics of the population, such as annual mortality rates in fisheries, temporal variations in prey abundance and effects of contaminants on reproductive activity, are required not only to set management objectives, but also to give context to cross-sectional life history information.
G protein-coupled receptors (GPCRs) are involved in numerous physiological processes and are the most frequent targets of approved drugs. The explosion in the number of new 3D molecular structures of GPCRs (3D-GPCRome) during the last decade has greatly advanced the mechanistic understanding and drug design opportunities for this protein family. Molecular dynamics (MD) simulations have become a widely established technique to explore the conformational landscape of proteins at an atomic level. However, the analysis and visualization of MD simulations require efficient storage resources and specialized software. Here we present GPCRmd (http://gpcrmd.org/), an online platform that incorporates web-based visualization capabilities as well as a comprehensive and user-friendly analysis toolbox that allows scientists from different disciplines to visualize, analyse and share GPCR MD data.GPCRmd originates from a community-driven effort to create the first open, interactive, and standardized database of GPCR MD simulations.However, static high-resolution structures provide little information on the intrinsic 71 flexibility of GPCRs, a key aspect to fully understand their function. Important advances 72
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.