This review provides a comprehensive summary of current hydrocracking applications, and presents recent advances in the synthesis and structure/composition control of various nanomaterials used in hydrocracking catalysts. Although a wide range of feeds are considered in this review, particular focus is placed on hydrocracking of aromatic and paraffinic compounds.The significance, concepts and principles of the hydrocracking process are first discussed focusing on its wide range of industrial applications. Then, recent advances in the synthesis of hydrocracking catalysts are presented, including different types of zeolites and metal promoted catalysts. Finally, we compare the performances of a wide range of hydrocracking catalysts, and discuss how their intrinsic properties (e.g. surface area, porosity, acidity, morphology and structure) can be controlled to achieve optimal catalytic performance in hydrocracking of aromatic compounds, heavy petrochemicals, paraffinic hydrocarbons and vegetable oils.