Additional information:
Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
AbstractWe measure the orbital properties of halo stars using seven-dimensional information provided by Gaia and the Sloan Digital Sky Survey. A metal-rich population of stars, present in both local main sequence stars and more distant blue horizontal branch stars, have very radial orbits (eccentricity ∼0.9) and apocenters that coincide with the stellar halo "break radius" at galactocentric distance r∼20 kpc. Previous work has shown that the stellar halo density falls off much more rapidly beyond this break radius. We argue that the correspondence between the apocenters of high metallicity, high-eccentricity stars, and the broken density profile is caused by the build-up of stars at the apocenter of a common dwarf progenitor. Although the radially biased stars are likely present down to metallicities of [Fe/H]∼−2, the increasing dominance at higher metallicities suggests a massive dwarf progenitor, which is at least as massive as the Fornax and Sagittarius dwarf galaxies, and is likely the dominant progenitor of the inner stellar halo.