Using a large sample of Main Sequence stars with 7-D measurements supplied by Gaia and SDSS, we study the kinematic properties of the local (within ∼10 kpc from the Sun) stellar halo. We demonstrate that the halo's velocity ellipsoid evolves strongly with metallicity. At the low [Fe/H] end, the orbital anisotropy (the amount of motion in the radial direction compared to the tangential one) is mildly radial with 0.2 < β < 0.4. However, for stars with [Fe/H]> −1.7 we measure extreme values of β ∼ 0.9. Across the metallicity range considered, i.e. −3 <[Fe/H]−1, the stellar halo's spin is minimal, at the level of 20
In a companion paper by Koposov et al., RR Lyrae from Gaia Data Release 2 are used to demonstrate that stars in the Orphan stream have velocity vectors significantly misaligned with the stream track, suggesting that it has received a large gravitational perturbation from a satellite of the Milky Way. We argue that such a mismatch cannot arise due to any realistic static Milky Way potential and then explore the perturbative effects of the Large Magellanic Cloud (LMC). We find that the LMC can produce precisely the observed motiontrack mismatch and we therefore use the Orphan stream to measure the mass of the Cloud. We simultaneously fit the Milky Way and LMC potentials and infer that a total LMC mass of 1.38 +0.27 −0.24 × 10 11 M is required to bend the Orphan Stream, showing for the first time that the LMC has a large and measurable effect on structures orbiting the Milky Way. This has far-reaching consequences for any technique which assumes that tracers are orbiting a static Milky Way. Furthermore, we measure the Milky Way mass within 50 kpc to be 3.80 +0.14 −0.11 × 10 11 M . Finally, we use these results to predict that, due to the reflex motion of the Milky Way in response to the LMC, the outskirts of the Milky Way's stellar halo should exhibit a bulk, upwards motion.
We perform a search for stellar streams around the Milky Way using the first 3 yr of multiband optical imaging data from the Dark Energy Survey (DES). We use DES data covering ∼5000 deg 2 to a depth of g>23.5 with a relative photometric calibration uncertainty of <1%. This data set yields unprecedented sensitivity to the stellar density field in the southern celestial hemisphere, enabling the detection of faint stellar streams to a heliocentric distance of ∼50 kpc. We search for stellar streams using a matched filter in color-magnitude space derived from a synthetic isochrone of an old, metal-poor stellar population. Our detection technique recovers four previously known thin stellar streams: Phoenix, ATLAS, Tucana III, and a possible extension of Molonglo. In addition, we report the discovery of 11 new stellar streams. In general, the new streams detected by DES are fainter, more distant, and lower surface brightness than streams detected by similar techniques in previous photometric surveys. As a by-product of our stellar stream search, we find evidence for extratidal stellar structure associated with four globular clusters: NGC 288, NGC 1261, NGC 1851, and NGC 1904. The ever-growing sample of stellar streams will provide insight into the formation of the Galactic stellar halo, the Milky Way gravitational potential, and the large-and small-scale distribution of dark matter around the Milky Way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.