Within the framework of a realistic atomistic lattice-gas model, we present the theoretical formulation and simulation procedures for precise analysis of the chemical diffusion flux of highly mobile CO within a nonuniform interacting mixed CO+O adlayer on a Pd(100) surface. The approach applies in both regimes of relatively immobile unequilibrated and fairly mobile near-equilibrated O adlayer distributions. Spatiotemporal behavior in surface reactions is controlled by chemical diffusion in mixed adlayers. Thus, we naturally integrate the above analysis with a previously developed multiscale modeling strategy to describe mesoscale reaction front propagation in CO oxidation on Pd(100). This treatment avoids using a simplified prescription of chemical diffusion and reaction kinetics as in traditional mean-field reaction-diffusion equation approaches.
KeywordsAtomistic lattice-gas model, chemical diffusion flux, reaction-diffusion equation, reaction-front propagation, computer simulation, diffusion in gases, oxidation, palladum, reaction kinetics, surface reactions, carbon monoxide Within the framework of a realistic atomistic lattice-gas model, we present the theoretical formulation and simulation procedures for precise analysis of the chemical diffusion flux of highly mobile CO within a nonuniform interacting mixed CO+O adlayer on a Pd͑100͒ surface. The approach applies in both regimes of relatively immobile unequilibrated and fairly mobile near-equilibrated O adlayer distributions. Spatiotemporal behavior in surface reactions is controlled by chemical diffusion in mixed adlayers. Thus, we naturally integrate the above analysis with a previously developed multiscale modeling strategy to describe mesoscale reaction front propagation in CO oxidation on Pd͑100͒. This treatment avoids using a simplified prescription of chemical diffusion and reaction kinetics as in traditional mean-field reaction-diffusion equation approaches.