Nitrogen-doped carbon aerogels (NCAs) have received great attention for a wide range of applications, from thermal electronics to waste water purification, heavy metal or gas adsorption, energy storage, and catalyst supports. Herein NCAs are developed via the synthesis of a Schiff-base porous organic polymer aerogel followed by pyrolysis. By controlling the pyrolysis temperature, the polymer aerogel can be simply converted into porous NCAs with a low bulk density (5 mg cm −3 ), high surface area (2356 m 2 g −1 ), and high bulk porosity (70%). The NCAs containing 1.8-5.3 wt% N atoms exhibit remarkable CO 2 uptake capacities (6.1 mmol g −1 at 273 K and 1 bar, 33.1 mmol g −1 at 323 K and 30 bar) and high ideal adsorption solution theory selectivity (47.8) at ambient pressure. Supercapacitors fabricated with NCAs display high specific capacitance (300 F g −1 at 0.5 A g −1 ), fast rate (charge to 221 F g −1 within only 17 s), and high stability (retained >98% capacity after 5000 cycles). Asymmetric supercapacitors assembled with NCAs also show high energy density and power density with maximal values of 30.5 Wh kg −1 and 7088 W kg −1 , respectively. The outstanding CO 2 uptake and energy storage abilities are attributed to the ultra-high surface area, N-doping, conductivity, and rigidity of NCA frameworks.