Single atoms of select transition metals supported on carbon substrates have emerged as a unique system for electrocatalysis because of maximal atom utilization (≈100%) and high efficiency for a range of reactions involved in electrochemical energy conversion and storage, such as the oxygen reduction, oxygen evolution, hydrogen evolution, and CO reduction reactions. Herein, the leading strategies for the preparation of single atom catalysts are summarized, and the electrocatalytic performance of the resulting samples for the various reactions is discussed. In general, the carbon substrate not only provides a stabilizing matrix for the metal atoms, but also impacts the electronic density of the metal atoms due to strong interfacial interactions, which may lead to the formation of additional active sites by the adjacent carbon atoms and hence enhanced electrocatalytic activity. This necessitates a detailed understanding of the material structures at the atomic level, a critical step in the construction of a relevant structural model for theoretical simulations and calculations. Finally, a perspective is included highlighting the promises and challenges for the future development of carbon-supported single atom catalysts in electrocatalysis.