Yttrium (Y) is an essential lanthanide rare earth element and can be effectively extracted and purified using a hollow fiber supported liquid membrane (HFSLM) system. However, the stability of HFSLM system is a significant challenge. Pseudoemulsion-hollow fiber strip dispersion (PEHFSD) system, providing excellent stability, is attracting research attention. In this work, the recovery of Y(III) by PEHFSD system using di(2-ethylhexyl)phosphoric acid (D2EHPA) as a carrier was investigated. The effects of several operating parameters, including the initial concentration of Y(III) in the feed phase, the flow rate of feed, the stirring speed and the volumetric ratio of feed to strip on Y(III) separation were studied. The Y(III) transport was analyzed on the concentration ratio of Y(III) ions, percent extraction, percent stripping and overall mass transfer coefficient (Kp). The PEHFSD system outperformed HFSLM system regarding separation performance and stability. Kp of HFSLM system decreased after the second run, but Kp of PEHFSD system remained constant even at the fifth run. The dispersed droplets in the strip dispersion phase in the PEHFSD system enhanced separation performance and stability of the membrane module.