The steel constructions of mine shaft steelwork are particularly exposed to aggressive environments, which cause large, nonuniform corrosion loss throughout the steel members. A correct assessment of corrosion loss and load-carrying capacity of shaft steelwork is crucial for its maintenance and safe operation. In this article, we present the results of laboratory, numerical, and analytical investigations conducted on naturally corroded steel guides disassembled from shaft steelwork. The steel guides considered had a closed profile formed by welding two hot-rolled channel sections. Laboratory bending tests were carried out on beams with various levels of corrosion loss, corresponding to compact, non-compact, and slender cross sections. Multiple detailed measurements of the thicknesses of naturally corroded walls were used in order to reproduce their nonuniform geometry in finite element (FE) models. The results of numerical simulations of five bending tests showed good agreement with laboratory measurements and replicated the observed failure modes, therefore confirming the applicability of this modeling approach for assessing the moment capacity of highly corroded steel beams when the deteriorated geometry is known. For the purpose of generalization, a series of derived models reflecting the natural corrosion pattern was then developed, and moment capacity statistics were collected through multiple simulations. They showed that the mean moment capacity is determined by the mean wall thickness. However, the minimum moment capacity is strongly affected by corrosion loss variation, particularly for the highly corroded beams. A simplified, analytical modeling approach was also examined, providing fairly good assessments of the mean; however, the minimum moment capacity could not be estimated. This study contributes to the body of knowledge on the mechanical behavior of highly corroded hot-rolled box-section beams.