Crack width measurement is an important element of research on the progress of self-healing cement composites. Due to the nature of this research, the method of measuring the width of cracks and their changes over time must meet specific requirements. The article presents a novel method of measuring crack width based on images from a scanner with an optical resolution of 6400 dpi, subject to initial image processing in the ImageJ development environment and further processing and analysis of results. After registering a series of images of the cracks at different times using SIFT conversion (Scale-Invariant Feature Transform), a dense network of line segments is created in all images, intersecting the cracks perpendicular to the local axes. Along these line segments, brightness profiles are extracted, which are the basis for determination of crack width. The distribution and rotation of the line of intersection in a regular layout, automation of transformations, management of images and profiles of brightness, and data analysis to determine the width of cracks and their changes over time are made automatically by own code in the ImageJ and VBA environment. The article describes the method, tests on its properties, sources of measurement uncertainty. It also presents an example of application of the method in research on autogenous self-healing of concrete, specifically the ability to reduce a sample crack width and its full closure within 28 days of the self-healing process.
The steel constructions of mine shaft steelwork are particularly exposed to aggressive environments, which cause large, nonuniform corrosion loss throughout the steel members. A correct assessment of corrosion loss and load-carrying capacity of shaft steelwork is crucial for its maintenance and safe operation. In this article, we present the results of laboratory, numerical, and analytical investigations conducted on naturally corroded steel guides disassembled from shaft steelwork. The steel guides considered had a closed profile formed by welding two hot-rolled channel sections. Laboratory bending tests were carried out on beams with various levels of corrosion loss, corresponding to compact, non-compact, and slender cross sections. Multiple detailed measurements of the thicknesses of naturally corroded walls were used in order to reproduce their nonuniform geometry in finite element (FE) models. The results of numerical simulations of five bending tests showed good agreement with laboratory measurements and replicated the observed failure modes, therefore confirming the applicability of this modeling approach for assessing the moment capacity of highly corroded steel beams when the deteriorated geometry is known. For the purpose of generalization, a series of derived models reflecting the natural corrosion pattern was then developed, and moment capacity statistics were collected through multiple simulations. They showed that the mean moment capacity is determined by the mean wall thickness. However, the minimum moment capacity is strongly affected by corrosion loss variation, particularly for the highly corroded beams. A simplified, analytical modeling approach was also examined, providing fairly good assessments of the mean; however, the minimum moment capacity could not be estimated. This study contributes to the body of knowledge on the mechanical behavior of highly corroded hot-rolled box-section beams.
Steel structures for a conveyance guiding system are subjected to prolonged, intense corrosion during their operation leading to a considerable loss of material and structure capacity reduction. Shaft guides are made of closed profiles welded from hotrolled channel sections. These profiles are categorized as class 1 cross-sections according to Eurocode 3, which means that they are resistant to local instability upon bending [1]. With an increase in the corrosion loss of the guides, the inertia moment of the crosssection is reduced. The resistance of profiles to local buckling is also reduced. However, calculations for local stability in guides upon bending are not required by the local Polish regulations on the operation of conveyance in shafts [2]. The question is whether this constitutes a shortcoming and risk for safe operation. Calculations according to steel construction standards [1] supported by numerical simulation were used to evaluate shaft steelwork guides resistance to buckling and their sensitivity to corrosion loss. It was shown that the guides of corrosion loss of 52-63%, depending on profile size, are prone to local buckling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.