2018
DOI: 10.18255/1818-1015-2018-2-232-245
|View full text |Cite
|
Sign up to set email alerts
|

Codes in Dihedral Group Algebra

Abstract: Аннотация. В 1978 году Р. Мак-Элисом построена первая асимметричная кодовая криптосистема, основанная на применении помехоустойчивых кодов Гоппы, при этом эффективные атаки на секретный ключ этой криптосистемы до сих пор не найдены. К настоящему врмени известно достаточно много кодовых криптосистем, но их криптографическая стойкость уступает стойкости классической криптосистемы Мак-Элиса. В связи с развитием квантовых вычислений кодовые криптосистемы рассматриваются как альтернатива теоретико-числовым, поэтому… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
10
0

Year Published

2019
2019
2020
2020

Publication Types

Select...
4
1

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(10 citation statements)
references
References 0 publications
0
10
0
Order By: Relevance
“…Algebraic description of the codes in F q D 2n , when gcd(q, 2n) = 1, was obtained in [12], [14]. In this section the codes in F q D 2n are explicitly described in the more general case when gcd(q, n) = 1.…”
Section: Dihedral Codesmentioning
confidence: 99%
See 2 more Smart Citations
“…Algebraic description of the codes in F q D 2n , when gcd(q, 2n) = 1, was obtained in [12], [14]. In this section the codes in F q D 2n are explicitly described in the more general case when gcd(q, n) = 1.…”
Section: Dihedral Codesmentioning
confidence: 99%
“…Let S be a subset of A j ; by S j we denote S j = ǫ j (S). Recall that P j ǫ j = id Aj and P j ǫ i = 0 for i = j (see (12)). Note that…”
Section: Bases and Generating Matrices Of Dihedral Codesmentioning
confidence: 99%
See 1 more Smart Citation
“…Algebraic approach to error-correcting codes gives some benefits, i.e. additional algebraic structure helps to study more efficient encoding and decoding algorithms for known codes (see for example [8]) and to discover new classes of codes in group algebras ( [9], [10], [11]).…”
Section: Introductionmentioning
confidence: 99%
“…There are several results on how to construct the Wedderburn decomposition and central primitive idempotents known (see [16], [17] ). In [18] the Wedderburn decomposition of finite dihedral group algebra was described and in [11] this decomposition was used to study the dihedral codes.…”
Section: Introductionmentioning
confidence: 99%