Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Peripheral sensory neurons respond to stimuli containing a wide range of spatio-temporal frequencies. We investigated electroreceptor neuron coding in the gymnotiform wave-type weakly electric fish Apteronotus leptorhynchus. Previous studies used low to mid temporal frequencies (<256 Hz) and showed that electroreceptor neuron responses to sensory stimuli could be almost exclusively accounted for by linear models, thereby implying a rate code. We instead used temporal frequencies up to 425 Hz, which is in the upper behaviorally relevant range for this species. We show that electroreceptors can: (A) respond up to the highest frequencies tested and (B) display strong nonlinearities in their responses to such stimuli. These nonlinearities were manifested by the fact that the responses to repeated presentations of the same stimulus were coherent at temporal frequencies outside of those contained in the stimulus waveform. Specifically, these consisted of low frequencies corresponding to the time varying contrast or envelope of the stimulus as well as higher harmonics of the frequencies contained in the stimulus. Heterogeneities in the afferent population influenced nonlinear coding as afferents with the lowest baseline firing rates tended to display the strongest nonlinear responses. To understand the link between afferent heterogeneity and nonlinear responsiveness, we used a phenomenological mathematical model of electrosensory afferents. Varying a single parameter in the model was sufficient to account for the variability seen in our experimental data and yielded a prediction: nonlinear responses to the envelope and at higher harmonics are both due to afferents with lower baseline firing rates displaying greater degrees of rectification in their responses. This prediction was verified experimentally as we found that the coherence between the half-wave rectified stimulus and the response resembled the coherence between the responses to repeated presentations of the stimulus in our dataset. This result shows that rectification cannot only give rise to responses to low frequency envelopes but also at frequencies that are higher than those contained in the stimulus. The latter result implies that information is contained in the fine temporal structure of electroreceptor afferent spike trains. Our results show that heterogeneities in peripheral neuronal populations can have dramatic consequences on the nature of the neural code.
Peripheral sensory neurons respond to stimuli containing a wide range of spatio-temporal frequencies. We investigated electroreceptor neuron coding in the gymnotiform wave-type weakly electric fish Apteronotus leptorhynchus. Previous studies used low to mid temporal frequencies (<256 Hz) and showed that electroreceptor neuron responses to sensory stimuli could be almost exclusively accounted for by linear models, thereby implying a rate code. We instead used temporal frequencies up to 425 Hz, which is in the upper behaviorally relevant range for this species. We show that electroreceptors can: (A) respond up to the highest frequencies tested and (B) display strong nonlinearities in their responses to such stimuli. These nonlinearities were manifested by the fact that the responses to repeated presentations of the same stimulus were coherent at temporal frequencies outside of those contained in the stimulus waveform. Specifically, these consisted of low frequencies corresponding to the time varying contrast or envelope of the stimulus as well as higher harmonics of the frequencies contained in the stimulus. Heterogeneities in the afferent population influenced nonlinear coding as afferents with the lowest baseline firing rates tended to display the strongest nonlinear responses. To understand the link between afferent heterogeneity and nonlinear responsiveness, we used a phenomenological mathematical model of electrosensory afferents. Varying a single parameter in the model was sufficient to account for the variability seen in our experimental data and yielded a prediction: nonlinear responses to the envelope and at higher harmonics are both due to afferents with lower baseline firing rates displaying greater degrees of rectification in their responses. This prediction was verified experimentally as we found that the coherence between the half-wave rectified stimulus and the response resembled the coherence between the responses to repeated presentations of the stimulus in our dataset. This result shows that rectification cannot only give rise to responses to low frequency envelopes but also at frequencies that are higher than those contained in the stimulus. The latter result implies that information is contained in the fine temporal structure of electroreceptor afferent spike trains. Our results show that heterogeneities in peripheral neuronal populations can have dramatic consequences on the nature of the neural code.
The distribution of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) activity was determined in electrosensory and electromotor systems of the weakly electric gymnotiform teleost Apteronotus leptorhynchus as an indicator of putative nitric oxide synthase-containing cells. NADPH-d activity was detected in electroreceptors and in afferent nerves of both ampullary and type I and type II tuberous organs. All cell bodies within the anterior lateral line nerve ganglion were positive for NADPH-d activity, as were the primary afferent axons and termination fields in the medullary electrosensory lateral line lobe. In the corpus cerebelli and valvula cerebelli, NADPH-d label was present in Purkinje cell somata, mossy fiber synaptic glomeruli, granule cells, and parallel fibers. In the midbrain, NADPH-d activity was apparent in layer VIIIB of the torus semicircularis dorsalis and in electrosensory laminae of the optic tectum. NADPH-d was particularly associated with diencephalic electrosensory and electromotor nuclei, including the prepacemaker nucleus, the nucleus subelectrosensorius, and the central posterior nucleus of the thalamus. Intense NADPH-d activity was present in pacemaker and relay cells of the medullary pacemaker nucleus but was absent from a novel class of smaller cells in this structure. Relay cell axons and spinal electromotor neurons and their axons within the electric organ were positive for NADPH-d activity. These results indicate that putative nitric oxide synthase-containing neurons in Apteronotus are localized preferentially to electrosensory and electromotor structures, suggesting a role for nitric oxide in determining the activity of cells involved in detecting or generating weakly electric fields.
Animals can efficiently process sensory stimuli whose attributes vary over orders of magnitude by devoting specific neural pathways to process specific features in parallel. Weakly electric fish offer an attractive model system as electrosensory pyramidal neurons responding to amplitude modulations of their self‐generated electric field are organized into three parallel maps of the body surface. While previous studies have shown that these fish use parallel pathways to process stationary stimuli, whether a similar strategy is used to process motion stimuli remains unknown to this day. We recorded from electrosensory pyramidal neurons in the weakly electric fish Apteronotus leptorhynchus across parallel maps of the body surface (centromedial, centrolateral, and lateral) in response to objects moving at velocities spanning the natural range. Contrary to previous observations made with stationary stimuli, we found that all cells responded in a similar fashion to moving objects. Indeed, all cells showed a stronger directionally nonselective response when the object moved at a larger velocity. In order to explain these results, we built a mathematical model incorporating the known antagonistic center–surround receptive field organization of these neurons. We found that this simple model could quantitatively account for our experimentally observed differences seen across E and I‐type cells across all three maps. Our results thus provide strong evidence against the hypothesis that weakly electric fish use parallel neural pathways to process motion stimuli and we discuss their implications for sensory processing in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.