In this paper we study a continuum version of the Potts model, where particles are points in R d , d ≥ 2, with a spin which may take S ≥ 3 possible values. Particles with different spins repel each other via a Kac pair potential of range γ −1 , γ > 0. In mean field, for any inverse temperature β there is a value of the chemical potential λ β at which S + 1 distinct phases coexist. We introduce a restricted ensemble for each mean field pure phase which is defined so that the empirical particles densities are close to the mean field values. Then, in the spirit of the Dobrushin Shlosman theory, [9], we prove that while the Dobrushin high-temperatures uniqueness condition does not hold, yet a finite size condition is verified for γ small enough which implies uniqueness and exponential decay of correlations. In a second paper, [8], we will use such a result to implement the Pirogov-Sinai scheme proving coexistence of S + 1 extremal DLR measures.