The use of artificial intelligence (AI) and the Internet of Things (IoT), which is a developing technology in medical applications that assists physicians in making more informed decisions regarding patients’ courses of treatment, has become increasingly widespread in recent years in the field of healthcare. On the other hand, the number of PET scans that are being performed is rising, and radiologists are getting significantly overworked as a result. As a direct result of this, a novel approach that goes by the name “computer-aided diagnostics” is now being investigated as a potential method for reducing the tremendous workloads. A Smart Lung Tumor Detector and Stage Classifier (SLD-SC) is presented in this study as a hybrid technique for PET scans. This detector can identify the stage of a lung tumour. Following the development of the modified LSTM for the detection of lung tumours, the proposed SLD-SC went on to develop a Multilayer Convolutional Neural Network (M-CNN) for the classification of the various stages of lung cancer. This network was then modelled and validated utilising standard benchmark images. The suggested SLD-SC is now being evaluated on lung cancer pictures taken from patients with the disease. We observed that our recommended method gave good results when compared to other tactics that are currently being used in the literature. These findings were outstanding in terms of the performance metrics accuracy, recall, and precision that were assessed. As can be shown by the much better outcomes that were achieved with each of the test images that were used, our proposed method excels its rivals in a variety of respects. In addition to this, it achieves an average accuracy of 97 percent in the categorization of lung tumours, which is much higher than the accuracy achieved by the other approaches.