In the last decade, there has been a significant increase in medical cases involving brain tumors. Brain tumor is the tenth most common type of tumor, affecting millions of people. However, if it is detected early, the cure rate can increase. Computer vision researchers are working to develop sophisticated techniques for detecting and classifying brain tumors. MRI scans are primarily used for tumor analysis. We proposed an automated system for brain tumor detection and classification using a saliency map and deep learning feature optimization in this paper. The proposed framework was implemented in stages. In the initial phase of the proposed framework, a fusion‐based contrast enhancement technique is proposed. In the following phase, a tumor segmentation technique based on saliency maps is proposed, which is then mapped on original images based on active contour. Following that, a pre‐trained CNN model named EfficientNetB0 is fine‐tuned and trained in two ways: on enhanced images and on tumor localization images. Deep transfer learning is used to train both models, and features are extracted from the average pooling layer. The deep learning features are then fused using an improved fusion approach known as Entropy Serial Fusion. The best features are chosen in the final step using an improved dragonfly optimization algorithm. Finally, the best features are classified using an extreme learning machine (ELM). The experimental process is conducted on three publically available datasets and achieved an improved accuracy of 95.14, 94.89, and 95.94%, respectively. The comparison with several neural nets shows the improvement of proposed framework.
The COVID-19 virus's rapid global spread has caused millions of illnesses and deaths. As a result, it has disastrous consequences for people's lives, public health, and the global economy. Clinical studies have revealed a link between the severity of COVID-19 cases and the amount of virus present in infected people's lungs. Imaging techniques such as computed tomography (CT) and chest x-rays can detect COVID-19 (CXR). Manual inspection of these images is a difficult process, so computerized techniques are widely used. Deep convolutional neural networks (DCNNs) are a type of machine learning that is frequently used in computer vision applications, particularly in medical imaging, to detect and classify infected regions. These techniques can assist medical personnel in the detection of patients with COVID-19. In this article, a Bayesian optimized DCNN and explainable AI-based framework is proposed for the classification of COVID-19 from the chest X-ray images. The proposed method starts with a multi-filter contrast enhancement technique that increases the visibility of the infected part. Two pre-trained deep models, namely, EfficientNet-B0 and MobileNet-V2, are fine-tuned according to the target classes and then trained by employing Bayesian optimization (BO). Through BO, hyperparameters have been selected instead of static initialization. Features are extracted from the trained model and fused using a slicing-based serial fusion approach. The fused features are classified using machine learning classifiers for the final classification. Moreover, visualization is performed using a Grad-CAM that highlights the infected part in the image. Three publically available COVID-19 datasets are used for the experimental process to obtain improved accuracies of 98.8, 97.9, and 99.4%, respectively.
Botnets are conglomerations of traded PCs (bots) that are remotely controlled by its originator (botmaster) under a command-and-control (C&C) foundation. Botnets are the making dangers against cutting edge security. They are the key vehicles for several Internet assaults, for example, spam, distributed denial-of-service (DDoS) attack, rebate distortion, malware spreading, and phishing. This review paper depicts the botnet examined in three domains: preview of botnets, observation, and analysis of botnets, apart from keeping track of them and protecting against them too. We have also attempted to the various ways to indicate differing countermeasures to the botnet dangers and propose future heading for botnet affirmation look into a consolidated report on the energy investigation and future headings for botnet break down are also been presented in this paper.
Distributed Power Generation and Energy Storage Systems (DPG-ESSs) are crucial to securing a local energy source. Both entities could enhance the operation of Smart Grids (SGs) by reducing Power Loss (PL), maintaining the voltage profile, and increasing Renewable Energy (RE) as a clean alternative to fossil fuel. However, determining the optimum size and location of different methodologies of DPG-ESS in the SG is essential to obtaining the most benefits and avoiding any negative impacts such as Quality of Power (QoP) and voltage fluctuation issues. This paper’s goal is to conduct comprehensive empirical studies and evaluate the best size and location for DPG-ESS in order to find out what problems it causes for SG modernization. Therefore, this paper presents explicit knowledge of decentralized power generation in SG based on integrating the DPG-ESS in terms of size and location with the help of Metaheuristic Optimization Algorithms (MOAs). This research also reviews rationalized cost-benefit considerations such as reliability, sensitivity, and security studies for Distribution Network (DN) planning. In order to determine results, various proposed works with algorithms and objectives are discussed. Other soft computing methods are also defined, and a comparison is drawn between many approaches adopted in DN planning.
Cloud computing has become an essential source for modern trade or market environments by abled frameworks. The exponential growth of cloud computing services in the last few years has resulted in extensive use, especially in storing and sharing the data on various cloud servers. The current trend in the cloud shows that the cloud owners use relative functions and target areas in such a way that cloud customers access or store their data either in the same servers or related servers. Simultaneously, from the security point of view, the lack of confidence about the customer's data on the cloud server is still questionable. The hour's need is to provide the cloud service in a 'single port way' by forming the joint management policy to increase customer satisfaction and profitability. In addition to this, the authentication steps also need to be improvised. This paper discusses issues on the security authentication and access provisioning of the cloud service consumers in federated clouds using subscribed user identity. This work proposes the user identity verification module (UidVM) in the cloud service consumer's authentication process to serve as a cloud broker to minimize the work overloads on the central cloud federation management system, thus enhancing the cloud security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.