The Internet of Drone Things (IoDT) is a trending research area where drones are used to gather information from ground networks. In order to overcome the drawbacks of the Internet of Vehicles (IoV), such as congestion issues, security issues, and energy consumption, drones were introduced into the IoV, which is termed drone-assisted IoV. Due to the unique characteristics of the IoV, such as dynamic mobility and unsystematic traffic patterns, the performance of the network is reduced in terms of delay, energy consumption, and overhead. Additionally, there is the possibility of the existence of various attackers that disturb the traffic pattern. In order to overcome this drawback, the drone-assisted IoV was developed. In this paper, the bio-inspired dynamic trust and congestion-aware zone-based secured Internet of Drone Things (BDTC-SIoDT) is developed, and it is mainly divided into three sections. These sections are dynamic trust estimation, congestion-aware community construction, and hybrid optimization. Initially, through the dynamic trust estimation process, triple-layer trust establishment is performed, which helps to protect the network from all kinds of threats. Secondly, a congestion-aware community is created to predict congestion and to avoid it. Finally, hybrid optimization is performed with the combination of ant colony optimization (ACO) and gray wolf optimization (GWO). Through this hybrid optimization technique, overhead occurs during the initial stage of transmission, and the time taken by vehicles to leave and join the cluster is reduced. The experimentation is performed using various threats, such as flooding attack, insider attack, wormhole attack, and position falsification attack. To analyze the performance, the parameters that are considered are energy efficiency, packet delivery ratio, routing overhead, end-to-end delay, packet loss, and throughput. The outcome of the proposed BDTC-SIoDT is compared with earlier research works, such as LAKA-IOD, NCAS-IOD, and TPDA-IOV. The proposed BDTC-SIoDT achieves high performance when compared with earlier research works.
Distributed Power Generation and Energy Storage Systems (DPG-ESSs) are crucial to securing a local energy source. Both entities could enhance the operation of Smart Grids (SGs) by reducing Power Loss (PL), maintaining the voltage profile, and increasing Renewable Energy (RE) as a clean alternative to fossil fuel. However, determining the optimum size and location of different methodologies of DPG-ESS in the SG is essential to obtaining the most benefits and avoiding any negative impacts such as Quality of Power (QoP) and voltage fluctuation issues. This paper’s goal is to conduct comprehensive empirical studies and evaluate the best size and location for DPG-ESS in order to find out what problems it causes for SG modernization. Therefore, this paper presents explicit knowledge of decentralized power generation in SG based on integrating the DPG-ESS in terms of size and location with the help of Metaheuristic Optimization Algorithms (MOAs). This research also reviews rationalized cost-benefit considerations such as reliability, sensitivity, and security studies for Distribution Network (DN) planning. In order to determine results, various proposed works with algorithms and objectives are discussed. Other soft computing methods are also defined, and a comparison is drawn between many approaches adopted in DN planning.
As the amount of medical images transmitted over networks and kept on online servers continues to rise, the need to protect those images digitally is becoming increasingly important. However, due to the massive amounts of multimedia and medical pictures being exchanged, low computational complexity techniques have been developed. Most commonly used algorithms offer very little security and require a great deal of communication, all of which add to the high processing costs associated with using them. First, a deep learning classifier is used to classify records according to the degree of concealment they require. Medical images that aren't needed can be saved by using this method, which cuts down on security costs. Encryption is one of the most effective methods for protecting medical images after this step. Confusion and dispersion are two fundamental encryption processes. A new encryption algorithm for very sensitive data is developed in this study. Picture splitting with image blocks is now developed by using Zigzag patterns, rotation of the image blocks, and random permutation for scrambling the blocks. After that, this research suggests a Region of Interest (ROI) technique based on selective picture encryption. For the first step, we use an active contour picture segmentation to separate the ROI from the Region of Background (ROB).
Technology advancements have enabled the capture of Renewable Energy Sources (RES) on a massive scale. Smart Grids (SGs) that combine conventional and RES are predicted as a sustainable method of power generation. Moreover, environmental conditions impact all RES, causing changes in the amount of electricity produced by these sources. Furthermore, availability is dependent on daily or annual cycles. Although smart meters allow real-time demand prediction, precise models that predict the electricity produced by RES are also required. Prediction Models (PMs) accurately guarantee grid stability, efficient scheduling, and energy management. For example, the SG must be smoothly transformed into the conventional energy source for that time and guarantee that the electricity generated meets the predicted demand if the model predicts a period of Renewable Energy (RE) loss. The literature also suggests scheduling methods for demand-supply matching and different learning-based PMs for sources of RE using open data sources. This paper developed a model that accurately replicates a microgrid, predicts demand and supply, seamlessly schedules power delivery to meet demand, and gives actionable insights into the SG system’s operation. Furthermore, this work develops the Demand Response Program (DRP) using improved incentive-based payment as cost suggestion packages. The test results are valued in different cases for optimizing operating costs through the multi-objective ant colony optimization algorithm (MOACO) with and without the input of the DRP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.