Inositol stabilized arginine silicate (ASI) ingestion has been reported to increase nitric oxide levels while inositol (I) has been reported to enhance neurotransmission. The current study examined whether acute ASI + I (Inositol-enhanced bonded arginine silicate) ingestion affects cognitive function in e-sport gamers. In a double blind, randomized, placebo controlled, and crossover trial, 26 healthy male (n = 18) and female (n = 8) experienced gamers (23 ± 5 years, 171 ± 11 cm, 71.1 ± 14 kg, 20.7 ± 3.5 kg/m2) were randomly assigned to consume 1600 mg of ASI + I (nooLVL®, Nutrition 21) or 1600 mg of a maltodextrin placebo (PLA). Prior to testing, participants recorded their diet, refrained from consuming atypical amounts of stimulants and foods high in arginine and nitrates, and fasted for 8 h. During testing sessions, participants completed stimulant sensitivity questionnaires and performed cognitive function tests (i.e., Berg-Wisconsin Card Sorting task test, Go/No-Go test, Sternberg Task Test, Psychomotor Vigilance Task Test, Cambridge Brain Sciences Reasoning and Concentration test) and a light reaction test. Participants then ingested treatments in a randomized manner. Fifteen minutes following ingestion, participants repeated tests (Pre-Game). Participants then played their favorite video game for 1-h and repeated the battery of tests (Post-Game). Participants observed a 7–14-day washout period and then replicated the study with the alternative treatment. Data were analyzed by General Linear Model (GLM) univariate analyses with repeated measures using weight as a covariate, paired t-tests (not adjusted to weight), and mean changes from baseline with 95% Confidence Intervals (CI). Pairwise comparison revealed that there was a significant improvement in Sternberg Mean Present Reaction Time (ASI + I vs. PLA; p < 0.05). In Post-Game assessments, 4-letter Absent Reaction Time (p < 0.05), 6-letter Present Reaction Time (p < 0.01), 6-letter Absent Reaction Time (p < 0.01), Mean Present Reaction Time (p < 0.02), and Mean Absent Reaction Time (p < 0.03) were improved with ASI + I vs. PLA. There was a non-significant trend in Pre-Game Sternberg 4-letter Present Reaction time in ASI + I vs. PLA (p < 0.07). ASI + I ingestion better maintained changes in Go/No-Go Mean Accuracy and Reaction Time, Psychomotor Vigilance Task Reaction Time, and Cambridge Post-Game Visio-spatial Processing and Planning. Results provide evidence that ASI + I ingestion prior to playing video games may enhance some measures of short-term and working memory, reaction time, reasoning, and concentration in experienced gamers.