Social anxiety disorder (SAD) is a mental disorder characterized by excessive anxiety in social situations. This study aimed to examine the alteration of resting-state functional connectivity in SAD patients related to the virtual reality-based self-training (VRS) which enables exposure to social situations in a controlled environment. Fifty-two SAD patients were randomly assigned to the experimental group who received the VRS, or the control group who did not. Self-report questionnaires and resting-state functional magnetic resonance imaging (fMRI) were performed to assess clinical symptoms and analyze the resting-state network properties, respectively. Significant decrease in social anxiety and an increase in self-esteem was found in the experimental group. From the resting-state fMRI analysis, alteration of local network properties in the left dorsolateral prefrontal gyrus (-10.0%, p = 0.025), left inferior frontal gyrus (-32.3%, p = 0.044), left insula (-17.2%, p = 0.046), left Heschl's gyrus (-21.2%, p = 0.011), bilateral inferior temporal gyrus (right: +122.6%, p = 0.045; left:−46.7%, p = 0.015), and right calcarine sulcus (+17.0%, p = 0.010) were found in the experimental group. Average shortest path length (+8.3%, p = 0.008) and network efficiency (-7.6%, p = 0.011) are found to be altered from the global network property analysis. In addition, the experimental group displayed more positive and more negative changes in the correlation trend of average shortest path length (p = 0.004) and global network efficiency (p = 0.014) with the severity of social anxiety, respectively. These results suggest potential effectiveness of the VRS, which is possibly related to the change of aberrant processing and control of visual and auditory linguistic stimuli and the adaptive change in rumination pattern.