In this paper, a solid-state plasma (SSP) metamaterial for an analog of the electromagnetically induced transparency phenomenon is designed and investigated. This electromagnetically induced transparency metamaterial has the ability to interact with both incident electric and magnetic fields, and its low-loss characteristics, slow-wave effect, band reconfigurability, and polarization-insensitive characteristics are researched and explored. According to the tunable SSP, we have successfully implemented two modes of operation (mode 1 and mode 2) by whether the SSP resonance unit is excited or not. Low-loss characteristics and polarization-insensitive properties are achieved by rotating the split-ring resonator (SRR) by 180° in the plane and rotating the overall plane framework 90° to form a three-dimensional structure. After that, the maximum group delay of 261.51 ps and 785.09 ps as well as the delay bandwidth product of 17.51 and 62.96 at mode 1 and mode 2, respectively, are discussed respectively. This indicates a good slow-wave effect as well as a high efficiency of communication devices. After all, in mode 1, a transmission peak at 0.541 THz is observed for a transmission ratio of 92.05%; and in mode 2, a transmission peak at 0.741 THz is observed for a transmission ratio of 93.01%, resulting in a bandwidth shift of 0.2 THz. Due to the uniqueness of the developed metamaterial, it holds potential for a wide range of applications in slow-wave devices, modulators, sensors, and communications equipment.