In engineering field, analytical methods can only be applied to classic heat transfer problems with regular geometric boundaries. It is difficult to apply analytical methods in solving the mathematical and physical equations in nonorthogonal boundary of irregular domains. In this paper, we presented a method by conformal mapping from the solution for heat conduction problems in regular domains to solve problems in irregular domains.
The model to predict particle deposition velocity on rough walls in fully developed turbulent duct flows has been developed in previous studies. For particle deposition model boundary conditions, it is assumed that the concentration of the particle is zero on the surface and the resuspension velocity is constant. However, the resuspension velocity may not be constant with the increase in mass of the deposited dust. To analyze the behavior of resuspension in air flow, a set of experiments were designed and conducted. Results showed that there was a linear relationship between the mass of resuspension and deposited dust. Also, the particle deposition model was improved by adding a resuspension item to the equation, and the steady-state equation was developed into a time-varying equation. The analysis results are presented in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.