The clustering process of charged grains often resembles a formation stage of colloidal and spongy matter, as well as some astrophysical objects. In this paper, molecular dynamics simulation is used to simulate the formation process of clusters of massive charged grains in plasmas. It is found that, from an initially uniform distribution of grains with Maxwellian velocity distribution, a statistically stationary system of clusters, each with different dynamic as well as thermodynamic characteristics, can form. The dependence of the asymptotic, of the final, state of the cluster system on the initial temperature and density of the grains is discussed.