We show how a Dzyaloshinskii-Moriya interaction can be generated in an ultrathin metal film from the induced internal electric field created by an ultrashort electromagnetic pulse. This interaction does not require structural inversion-symmetry breaking, and its amplitude can be tuned depending on the amplitude of the field. We perform first-principles calculations to estimate the strength of the field-induced magnetoelectric coupling for ferromagnetic Fe, Co, and Ni, and antiferromagnetic Mn, as well as FePt alloys. Last, using atomistic simulations, we demonstrate how an isolated antiferromagnetic skyrmion can be coherently nucleated from the collinear background by an ultrashort pulse in electric field on a 100-fs timescale.