Induction of mutation has been used to create additional genetic variability in grass pea (Lathyrus sativus L.). During the ongoing investigations on different induced-morphological mutants, the author detected three types of dwarf mutants in grass pea. One mutant, designated as dwf1 type was earlier identified in colchicine-induced C2 generation of grass pea variety BioR-231 while the other two, designated as dwf2 and dwf3 were isolated in 250 Gy and 300 Gy gamma ray irradiated M2 progeny of variety 'BioR-231' and 'Hooghly Local', respectively. As compared to their parental varieties (controls), all the three mutants manifested stunted, erect and determinate stem, early maturity and tolerance to pod shattering habit. The mutants differed from each other, as well as with controls, in number of primary branches, nature of stipules and internodes, length of peduncle, leaflet and seed coat colour, seed yield and seed neurotoxin content. The three dwarf mutants were monogenically recessive and bred true in successive generations. F2 segregation pattern obtained from the crosses involving the three mutants indicated that dwarf mutation in grass pea was controlled by two independent non-allelic genes, assigned as df1 (for dwf1 type), df2 (for dwf2 type) and df3 (for dwf3 type), with the df1 locus being multiple allelic. Primary trisomic analyses revealed the presence of df1/df2 locus on the extra chromosome of trisomic type I, whereas df3 was located on the extra chromosome of type III. Linkage studies involving five other phenotypic markers suggested linked association of df1/df2 locus with lfc (leaflet colour) and wgn (winged internode) and df3 locus with cbl (seed coat colour). Both the loci; however, assorted independently with flower colour and stipule character. The dwarf types can be utilized as valuable tools for further cytogenetic research and breeding of grass pea.