The aim of the research is to quantify the property of asphalt mortar and asphalt mixture containing municipal solid waste incineration (MSWI) fly ash. The potential of partially replacing mineral fillers with MSWI fly ash in asphalt mixture production was investigated. Five different MSWI fly ash replacement ratios, which include 0%, 25%, 50%, 75%, and 100%, were adopted to assess the influence of fly ash dosage, and the optimum fly ash replacement ratio was proposed. The rheological characteristics of asphalt mortar with MSWI fly ash were assessed with the dynamic shear rheometer (DSR) and bending beam rheometer (BBR). The high temperature properties of the mixture with MSWI fly ash were assessed with the Marshall stability test and the rutting test. The low temperature cracking property was determined with the indirect tensile strength test at low temperatures. The moisture stability property was identified with the immersed Marshall test and the freeze-thaw cycles conditioned indirect tensile strength test. Based on the test results, the addition of fly ash and mineral filler remarkably increased the ǀG*ǀ of the asphalt mortar. The δ of asphalt decreased as the dosage of fly ash and mineral filler increased. The addition of fly ash and mineral filler degraded the low temperature characteristics of the mortar. Fly ash improved the high temperature characteristics of the asphalt mixture. The asphalt mixture with MSWI fly ash was more susceptible to thermal cracking than the control sample. The addition of fly ash weakened the moisture stability of the asphalt mixture. In order to guarantee the low temperature characteristics and the moisture susceptibility of the asphalt mixture, the fly ash replacement ratio was recommended to be set around 25%. With proper mixture design and fly ash dosage, the asphalt mixture would have adequate performance, as well as reduced environmental impact.