The abundance of information on the web makes it difficult for users to find items that meet their information need effectively. To deal with this issue, a large number of recommender systems based on different recommender approaches were developed which have been used successfully in a wide variety of domains such as e-commerce, e-learning, e-resources, and egovernment among others. Moreover, in order for a recommender system to generate good quality of recommendations, it is essential for a researcher to find the most suitable evaluation metric which best matches a given recommender algorithm and a recommender's task. However, with the availability of several recommender tasks, recommender algorithms, and evaluation metrics, it is often difficult for a researcher to find their best combination. This paper aims to discuss various evaluation metrics in order to help researchers to select the most appropriate metric which matches a given task and an algorithm so as to provide good quality of recommendations.