Abstract:One of the main weaknesses with traditional computing is the fact that the numerical world of the computer is decoupled from the user's real world. The application of Augmented Reality (AR) can provide interactive systems in which real objects and computer data are combined in a cohesive way. This new paradigm has many potential applications in various fields, in particular in the maintenance domain. It allows the user to see computer generated virtual objects superimposed to the real world through the see-through Head Mounted Display (HMD). The technician of maintenance, when using this system, can interact with the virtual world and have additional information, such as instruction for performing maintenance tasks in form of text messages, images, 3-D models of pieces or audio such as speech instruction. In this paper, we propose a design process of the maintenance system focused on the analysis of the interaction between the user, the system and the real world. This area is based on the UML notation. The use of UML represents our ergonomic and software design process basis for AR systems. This process also is based on ergonomic characteristics study within a UML system description and on the hybrid PAC-Amodeus model architecture adaptation for the AR systems.