This paper discusses a number of aspects of using grid computing methods in support of molecular simulations, with examples drawn from the eMinerals project. A number of components for a useful grid infrastructure are discussed, including the integration of compute and data grids, automatic metadata capture from simulation studies, interoperability of data between simulation codes, management of data and data accessibility, management of jobs and workflow, and tools to support collaboration. Use of a grid infrastructure also brings certain challenges, which are discussed. These include making use of boundless computing resources, the necessary changes, and the need to be able to manage experimentation.