In bladder tissue engineering, regeneration of muscle is of equal importance to epithelial regeneration. However, as yet there is no effective strategy for promoting bladder muscle regeneration. In this study we aim to promote bladder muscle regeneration by sustainably delivering heparin from a bilayer scaffold carrying stem cells. The bilayer scaffold [heparin–polycaprolactone (PCL)/bladder decellularized matrix (BAM) Hep-PB/PCL] comprises an electrospun layer (Hep-PB electrospun membrane) and a three-dimensional (3D) printed layer (PCL scaffold), fabricated via coaxial-electrospinning and 3D printing, respectively. Heparin was encapsulated into the core of the Hep-PB fibers with a core–shell structure to sustain its release. The morphology of the bilayer scaffold and the microstructure of the electrospun fibers were characterized. The release behavior of heparin from various electrospun membranes was evaluated. The role of Hep-PB in promoting myogenic differentiation of the adipose-derived stem cells (ADSCs) through sustainable release of heparin was also evaluated. After 7 d culture, Hep-PB/PCL scaffolds carrying ADSCs (defined as ASHP) were used for bladder reconstruction in a rat partial cystotomy model. The result shows that the PCL printed scaffold has ordered macropores (∼370 μm), unlike the compact microstructure of electrospun films. The Hep-PB membrane exhibits a sustained release behavior for heparin. This membrane also shows better growth and proliferation of ADSCs than the other membranes. The polymerase chain reaction results show that the expression of smooth muscle cell markers in ADSCs is enhanced by the Hep-PB scaffold. The results of retrograde urethrography and histological staining indicate that the bladder volume in the ASHP group recovers better, and the regenerated bladder muscle bundles are arranged in a more orderly fashion compared with the direct suture and bladder decellularized matrix groups. Therefore, findings from this study show that bladder muscle regeneration could be enhanced by bilayer scaffolds delivering heparin and carrying stem cells, which may provide a new strategy for bladder tissue engineering.