Luminosity and correlated color temperature (CCT) have gradually become two of the most important factors in the evaluation of the performance of light sources. However, although most color performance evaluation metrics are highly correlated with CCT, these metrics often do not account for light sources with different CCTs. This paper proposes the existence of a relationship between luminosity and CCT to remove the effects of CCT and to allow for a fairer judgment of light sources under the current color performance evaluation metrics. This paper utilizes the Hyper-Spectral Imaging (HSI) technique to recreate images of a standard color checker under different luminosities, CCT, and light sources. The images are then analyzed and transformed into interpolation figures and equal color difference curves. This paper utilizes statistic tools and symmetry properties to determine an exponential relationship between luminosity and CCT in red-green-blue (RGB) LED and OLED light sources. Such a relationship presents an option to remove the effects of CCT in color evaluation standards, as well as provide a guide line for adjusting visual experience solely by adjusting luminosity when creating a lighting system.