The multiple exp-function method is a new approach to obtain multiple-wave solutions of nonlinear partial differential equations (NLPDEs). By this method, one can obtain multi-soliton solutions of NLPDEs. Hence, in this paper, using symbolic computation, we apply the multiple exp-function method to construct the exact multiple-wave solutions of a (3 + 1)-dimensional soliton equation. Based on this application, we obtain mobile single-wave, double-wave and multi-wave solutions for this equation. In addition, we employ the straightforward and algebraic Hirota bilinearization method to construct the multi-soliton solutions of NLPDEs, and we reveal the remarkable property of soliton-soliton collision through this approach. Further, we investigate the one-and two-soliton solutions of a (3 + 1)-dimensional soliton equation using the Hirota's method. We explore the particle-like behavior or elastic interaction of solitons, which has potential application in optical communication systems and switching devices.