We investigate the nature of propagation of electromagnetic waves (EMWs) in an antiferromagnetic medium with Dzyaloshinsky-Moriya (DM) interaction environment. The interplay of bilinear and DM exchange spin coupling with the magnetic field component of the EMW has been studied by solving Maxwell's equations coupled with a nonlinear spin equation for the magnetization of the medium. We made a nonuniform expansion of the magnetization and magnetic field along the direction of propagation of EMW, in the framework of reductive perturbation method, and the dynamics of the system is found to be governed by a generalized derivative nonlinear Schrödinger (DNLS) equation. We employ the Jacobi-elliptic function method to solve the DNLS equation, and the electromagnetic wave propagation in an antiferromagnetic medium is governed by the breatherlike spatially and temporally coherent localized modes under the influence of DM interaction parameter.
We show by an extensive method of quasi-discrete multiple-scale approximation that nonlinear multi-dimensional lattice waves subjected to intersite and external on-site potentials are found to be governed by (N +1)-dimensional nonlinear Schrödinger (NLS) equation. In particular, the resonant mode interaction of (2+1)-dimensional NLS equation has been identified and the theory allows the inclusion of transverse effect. We apply the exponential function method to the (2+1)dimensional NLS equation and obtain the class of soliton solutions with a purely algebraic computational method. Notably, we discuss in detail the effects of the external on-site potentials on the explicit form of the soliton solution generated recursively. Under the action of the external on-site potentials, the model presents a rich variety of oscillating multidromion patterns propagating in the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.