This chapter summarizes nanofiltration (NF) studies focused on the treatment of thermal in-situ steam-assisted gravity drainage (SAGD)-produced water streams in the Alberta, Canada, oil sands industry. SAGD processes use recycled produced water to generate steam, which is injected into oil-bearing formations to enhance oil recovery. NF has potential applications in the produced water recycling treatment process for water softening, dissolved organic matter removal, and partial desalination, to improve recycle rates, reduce make-up water consumption, and provide an alternative to desalination technologies (thermal evaporation and reverse osmosis). The aim of this study was to provide proofof-concept for NF treatment of the following produced water streams in the SAGD operation: warm lime softener (WLS) inlet water, boiler feed water (BFW), and boiler blowdown (BBD) water. Commercial NF membranes enabled removal of up to 98% of the total dissolved solids (TDS), total organic carbon (TOC), and dissolved silica, which is significant compared to the removal achieved using conventional SAGD-produced water treatment processes. More than 99% removal of divalent ions was achieved using tight NF membranes, highlighting the potential of NF softening for oil sands-produced water streams. The NF process configurations studied provide feasible process arrangements suitable for integration into existing and future oil sands and other produced water treatment schemes.